Integrated G&C Implementation within IDOS - A Simulink Based
Reusable Launch Vehicle Simulation

Joseph E. Fisher, Tim Bevacqua,
Douglas A. Lawrence and J. Jim Zhu
School of EECS - Ohio University
Athens, Ohio 45701

ABSTRACT

The implementation of multiple Integrated
Guidance and Control (IG&C) algorithms per flight
phase within a vehicle simulation poses a daunting task
to coordinate algorithm interactions with the other
G&C components and with vehicle subsystems.
Currently being developed by Universal Space Lines
LLC (USL) under contract from NASA, the Integrated
Development and Operations System (IDOS) contains
a high fidelity Simulink vehicle simulation, which
provides a means to test cutting edge G&C
technologies. Combining the modularity of this
vehicle simulation and Simulink’s built-in primitive
blocks provide a quick way to implement algorithms.
To add discrete-event functionality to the unfinished
IDOS simulation, Vehicle Event Manager (VEM) and
Integrated Vehicle Health Monitoring (IVHM)
subsystems were created to provide discrete-event and
pseudo-health monitoring processing capabilities.

Matlab’s Stateflow is used to create the IVHM and
Event Manager subsystems and to implement a
supervisory logic controller referred to as the
Autocommander as part of the IG&C to coordinate the
control system adaptation and reconfiguration and to
select the control and guidance algorithms for a given
flight phase. Manual creation of the Stateflow charts
for all of these subsystems is a tedious and time-
consuming process. The Stateflow Autobuilder was
developed as a Matlab based software tool for the
automatic generation of a Stateflow chart from
information contained in a database. This paper
describes the IG&C, VEM and IVHM implementations
in IDOS. In addition, this paper describes the
Stateflow Autobuilder.

INTRODUCTION

In a robust, fault tolerant flight control system, a
controller design that incorporates vehicle health
status, sensor fidelity, and control effector limits is

Michael Mahoney
Universal Space Lines, LLC.
New Port Beach, California 92660

crucial in order to maintain stability under adverse
conditions. This, in part, involves monitoring and
reacting to possibly hundreds of signals generated by -
the vehicle health monitoring system in order to detect
and react to failures. A system that undergoes
adaptation or modification based upon discrete events
is referred to as a hybrid system.

Simulation of a system with continuous dynamics
that are influenced by discrete events [1] such as
failures is a necessary tool for the development of a
hybrid control system. One simulation software
package on the market is Matlab with Simulink and
Stateflow developed by The Mathworks.

Stateflow provides the capability within a
Simulink model to implement supervisory logic that
interprets system monitoring inputs so that a hybrid,
adaptive control system can be developed and
simulated. The Stateflow Autobuilder [2] software
tool has been developed to generate working Stateflow
charts from a Microsoft Access database or from an
Excel spreadsheet. In the Microsoft Access format, a
GUI provides a user-friendly interface for beginner
level users to enter and maintain the database, and the
Excel format allows advanced users to quickly build
the database by using a spreadsheet format.

The Stateflow Autobuilder supports a multi-
university effort to develop integrated guidance and
control technology for NASA’s second generation
reusable launch vehicle that features a top-level
supervisory controller referred to as the
Autocommander [3]. The Stateflow Autobuilder can
casily be adapted for more general use in discrete-
event or hybrid flight control system design and
simulation, such as implementing Vehicle Event
Manager (VEM) and Integrated Vehicle Health
Monitoring (IVHM) subsystems that are presented in
this paper.

Universal Space Lines (USL) has taken advantage
of The Mathworks’ Simulink simulation package to
create a generic simulation model that is loaded with
specific vehicle parameters to form a high fidelity

vehicle simulation. As different vehicle models arise,
only the specific parameters for a given vehicle are
loaded into Integrated Development and Operations
Systems (IDOS) to create a new vehicle simulation.
Once G&C algorithms have been implemented in
IDOS, the modular implementation design inherent to
Simulink models presented in this paper provides easy
swapping out of modified or wupdated G&C
components.

Also presented in this paper are the results of
adding Time Varying Bandwidth (TVB), which is one
component of the fault tolerant flight control system.
Time Varying Bandwidth is based upon singular
perturbation theory [4]. The fast inner loop and the
slow outer loop bandwidths should abide by the time
scale separation principle in order to ensure stability.
Upon receiving the TVB flag from the
Autocommander, the controller appropriately scales
back the bandwidths of both loops, which slows the
controller and maintains the required time scale
separation [5,6].

The implementation of the IG&C described in this
paper occurred within less than 2 months.

IDOS DESCRIPTION

Integrated Development & Operations System
(IDOS) is a software development environment for
launch wvehicle flight mechanics, which is currently
under development by USL. IDOS consists of three
components: IDOS Management System (IMS), Flight
Control Software (FCSW -Figure 1) and Vehicle (and
Environment) Simulation, and Real Time Test Bed
(RTTB).

Major components of IDOS are the Flight Control
Software and Vehicle (and Environment) Simulation
(FVS), implemented in a Simulink model. The FCSW
portion of FVS is where the integrated guidance and
control algorithms are implemented. The block-
diagram structure of Simulink allows for easy
implementation and development of these algorithms.
Also, the capability of incorporating C and Fortran S-
functions allows for fast implementation of pre-
existing code.

The IDOS Management System and Real Time
Test Bed are currently being developed.by USL. These
components are part of the complete IDOS software
tool that will allow faster than real time and real time
simulations.

ALGORITHM IMPLEMENTATION

The block diagram structure of Simulink enabled a
very modular implementation of the guidance and
control algorithms as shown in Figures 3 thru 5. The
modularity was achieved by using subsystem blocks to
form a hierarchal framework for the algorithms to
reside in. This modularity provides an easy way to
update individual algorithms, as well as compare
different algorithms.

The top level of this hierarchy contains the
Navigation, Guidance, Control, and Autocommander
subsystems, shown in Figure 2. These four subsystems
are the key components of the integrated guidance,
navigation and control (IGNC) algorithms.

The next level of the hierarchy separates the five
flight phases in the guidance and control subsystems,
as shown in Figure 3 for the control subsystem. The
guidance and control systems for each flight phase are
contained within enabled subsystems. A signal from
the Autocommander then enables the appropriate
subsystem for simulation.

This structure allows the user to make changes to
different algorithms without affecting the rest of the
simulation. As long as the input and output structure is
maintained, old blocks can be cut out and new ones
inserted. This provides an easy way to update the
model as improvements to individual algorithms are
made.

The next level of the hierarchy further separates
the algorithms into individual components. An
example is shown in Figure 4, where the ascent
controls block is separated into a controller block and a
control allocation block.

The separation of the control algorithms makes the
model extremely modular, allowing very specific
changes to be made without altering the rest of the
simulation. It also enables multiple algorithms to be
included within one model as shown in Figure 5.

If different algorithms exist for a single
component, switching between algorithms is done by
changing the value of an algorithm selection variable.
This variable enables the subsystem that is desired to
be used. Figure 5 shows the two types of controllers,
Trajectory Linearization Control (TLC) and Sliding
Mode Control (SMC), implemented in the same model.
An initialization program is run prior to simulation
where the user is prompted to choose the different
algorithms. This allows different algorithms to be
compared easily, with no modification to the
simulation code.

Navigsdon Sontiwk

ISU.-'{FACE_FAL “ surtace_sd l

Tiatas Sore Oxta Stave
Mednsond ey

ros_act Il onsR st]
Tist» Stan Qi Ve

bt rd

Loty SXore
Memeryh

Vehicle Dynsnwms
&

Endsvnsnant dodal

EDOF Ervironment Sirmulstion

EUAny IOt
Osir Mrwe
Kemory
Catn Stors
Paarexyd

Figure 1: Top Level System of the FVS,

Srutaml

Controls

Figure 2: The IG&C Subsystems.

o L
Avpcmaort Aecxn v
- JCme n
o >
AscGa2Cort " W SRscOuHZOans
[4 »
NmOR

AoertCarios

1 » E <Gl BJd 2 onb

.|
P ~Ewoanazenr

4AuCmd n i
=-rts! ORI 2 ol
>
P
anitCoartos
> VEACmd
0-3153)
r oomd In n > N
yOUId 200 7] > Y
Cortanstamd
v PATABS 1
Ertry Coatroks
- LCNEACHES
SToREMS
, ACad
I
PAURE md n
P {TABIGUTZC on) Orbl Kon@X,|
»
>
TAEM Coartioks
<ABp Lo
n

P AuRCmEn

AP LRI IO AN

-
>

Figure 3: Control system enabled Eﬁﬁgystems for each flight phase.

@ P NavDats

NavData

P AscGuid2Cont

AutoCmdin

P Autoomd2Cnt

Con2CA

Cortrolier

GimbalCmds

ThrettieMrCmde

Suiface Cmds

P NavData
Thiotile Cmd Avg

P{Cont2CA
GimbalCmds

r{PPO
Thiottin_MR_omds
Contral Allocation

! I <PPO>

Figure 4: The controller and control allocation subsystems,

Constart
Y
T_b
{ 1 ; : NavData T‘b
NavData
ThiottlaCmd Tretie
RN «
N
PdAseGuidZCont
MRCmd T Torqus Crmd-Ascent
TV-SMC
Logical
ator
P NavD at.
avData T_b 5
{ 2 ; P] AscGuid2Cont ThrottieCmd} y
Thiaottle
AscGuid2Cont
3} #{ AutoCmdin MRCmd o
Autocmd2Crt |

TY-TLC

Figure §: Choice of controller types: Sliding Mode Controller and Trajectory Linearization Controller.

STATEFLOW SUBSYSTEMS

In the past, creating a Stateflow chart for use in a
Simulink simulation of a large-scale guidance and
control system was a tedious and time-consuming
process. Manual manipulation of Stateflow’s
graphical user interface (GUI) was required to
individually create elements of a Stateflow chart [7].
Moreover, updating a chart to reflect revisions posed
a daunting task for a large system. An alternative
solution to overcome these problems is to be able to
automatically produce a Stateflow chart from a
database. Managing the parameters and elements of
a simulation via a database provides the ability to
efficiently modify or update the simulation model by
simply changing information within the database.

The Autocommander, Vehicle Event Manager
and IVHM subsystems use Stateflow charts. These
charts are automatically generated from a
spreadsheet/table database and inserted into the IDOS
environment via the Stateflow Autobuilder software
as describe in the following subsection.

Stateflow

Stateflow supports the execution of concurrent
automata by setting the decomposition parameter of

the chart to parallel. The states that are immediate
children of this chart are referred to as AND
(parallel) states, which are distinguished by dashed
borders as shown in Figures 9 & 10. This is a
particularly important feature of Stateflow that allows
a chart to be separated into different automata. In
Figures 9 & 10, there are two and three, respectively,
separate automaton that operate concurrently. The
traditional states of an automaton are called OR
(exclusive) state, which have solid line borders.

Another key feature of Stateflow is that when a
transition occurs or while in a state (entry, during,
exit and on event) actions can be implemented.
Actions may consist of setting flags, calling
Stateflow and Matlab functions, defining variables,
and broadcast events, etc.

Two different types of operators can trigger a
transition from one state to another, an event
broadcast or a valid logical expression. Labels of
transitions may contain either one or both types of
operators. The scope of an event dictates which
Stateflow objects receives its broadcast, which
triggers a transition. It can be an “Input from
Simulink”, “Local” to a group of states, or “Output to
Simulink”, The syntax of the logical expression is
identical to an “if’ statement in standard Matlab
syntax with an exception of being encased within a
square brackets. The data variables that are used

within a transition’s logical expression or within a
states action statement must be defined in the data
dictionary of the chart. Data variables have a scope
of “Local”, “Input from Simulink”, “Output to
Simulink”, “Temporary,” or “Constant”. Either
“Input from Simulink” or “Output to Simulink” scope
for both events and data variables require connection
of the Stateflow chart to the Simulink model.

Stateflow Autobuilder

The Autobuilder uses the Application
Programming Interfacé (API) of Stateflow 4.2 (and
later) to automate the construction of a complete
working chart. API only provides a way to insert
Stateflow objects into a chart, but not the capability
to automatically define a Stateflow object’s
parameters, such as position, size, or the label of a
state. Beyond the typical states, events and
transitions that characterize automata, the
Autobuilder creates data variables, junctions,
functions (graphical or text) and the remaining
Stateflow objects to allow users to utilize the full
features of Stateflow in the development of a hybrid
system.

In addition to generating a Stateflow chart,
wireless connection blocks (Goto and From blocks)
are generated to provide a plug and play capability
for the chart. Figure 11 shows a generated Stateflow
chart and the wirelessly connected input and output
ports that are generated by the Autobuilder. Within
the Simulink model, there must be preexisting
Goto/From blocks with tags that respectively match
the tags of the generated Goto/From blocks to
complete the “connection” that is normally made
with a line. A tag is a label that defines the
connection between a Goto block and a From block
and vice-versa. The Goto/From blocks that are
generated are tagged with the output/input variable or
event name concatenated with the string “PORT”.
For example, an output to Simulink variable that is
named “inputl” would be connected to a Goto block
with a tag of “inputlPORT”. Additionally, anywhere
in the Simulink model that this variable value or
signal is used would require a connection to a From
block with a matching tag of “input1PORT”.

With an automaton in mind, the first task in
generating a chart is to fill out the fields in the
database. The first spreadsheet/table to be filled out
is for the state information. Within this spreadsheet,
the state’s name, parents name, entry action label,

during action label, exit action label, on event action
label and the type (AND/OR) of state are the required
information for generating states, which is shown
Figure 6. For transitions, the required information
fields that are shown in Figure 7 are the transition’s
label, source (name), and destination (name). For
data variables the required fields are name, parent
name, data scope, data type and initial value as
shown in Figure 8. In a similar fashion, additional
spreadsheets/tables are required to be filled out for
events, functions, boxes, notes, and junctions.

After the Stateflow Autobuilder program is
executed, the resulting Stateflow chart is shown in
Figure 11. The placement of the Stateflow chart
block into a Simulink model is based upon the
position of the chart block it is going to replace. To
insert a new chart into a simulation, first a new chart
must be copied and placed by the user from the
Simulink block library. In addition, sufficient space
must be available around the existing Simulink model
prior to running the Autobuilder to allow proper
placement and sizing of the Stateflow chart without
overlay of other blocks. The graphical layouts of the
states, sizes of the states as well as the paths of the
transitions that are generated are organized in such a
manner that the produced Stateflow chart is generally
compact and easily readable.

Vehicle Event Manager

The addition of the Vehicle Event Manager
(VEM) makes IDOS a powerful tool to simulate off-
nominal flight scenarios that are associated with a
discrete-event driven simulation. The ease of
generating vehicle failures provides a method to test
and validate G&C algorithms very quickly under
various failure scenarios. Unlike other vehicle
simulation, any possible failure scenario can be
implemented and up-and-running in just a few
minutes.

In Excel spreadsheets, four parameters are to be
entered per failure event, and any combination of
failure events can form a failure scenario. The first
parameter is the start time of a failure event. The
second parameter is the end time of the event. The
third parameter is the type of failure. Finally, the
fourth parameter is a 0 to 1 scalar multiplier or a set
point at which the component has failed, which is
specific to the system and dependant on the type of
failure. Currently, only one failure type can occur per
component per simulation run. Eventually, the VEM

capabilities will be extended by vectorizing the event
parameters, which will allow multiple types of
failures to occur at different times per failed
component.

A Matlab script file reads the Excel spreadsheet
data and converts it into a text file. Within the
Vehicle Event Manager subsystem, an S-function
reads the text data and inputs it into the VEM’s
Stateflow chart.

Currently within the VEM’s Stateflow chart,
there are 42 generic YES/NO (ON/OFF) events as
shown in the upper AND superstate within Figure 9.
These events only use the start and stop times to set a
flag over the corresponding time interval. Also, there

are 22 effector events that are comprised of 8 surface
deflector failure events, 10 RCS thruster failure
events, and 4 engine failure events as shown in the
lower AND superstate in Figure 9. These events use
start and stop times to represent effector failures over
the corresponding time interval. The associated
event type that is used to specify the failure mode
are: 1(nominal), 2 (reduced control authority), 3 (set
at a position), and 4 (stuck at current position). The
failure value specified in the fourth parameter
dictates either a ‘set at’ position or a signal multiplier
value between 0 and 1 (0% to 100%) to characterize
remaining control authority. This parameter is not
used for the stuck effector failure event.

HESiagert 1

Figure 6: States’ Information Spreadsheet.

Chatt

s

Figure 7: Transitions’ Database/Spreadsheet.

Figure 8: Data Variables’ Database/ Spreadsheet.

Figure 9: Vehicle Event Manager Stateflow Chart,

Figure 10: Autocommander Stateflow Diagram.

Integrated Vehicle Health Monitor

The IVHM subsystem block currently takes the
flags/signals from the Vehicle Event Manager
subsystem block and individually adds a variable delay
to each signal. This delay time is to represent time
required by a real vehicle’s IVHM to process vehicle
data and to diagnose any vehicle problems. Two
different methods are used to achieve the variable
delay. The first method uses a Stateflow chart to add
delay for the 42 ON/OFF failure events. To
accomplish the delay in the binary signal, the
simulation time at which the signal from the Vehicle
Event Manager becomes 1 is stored. The amount of
delay is then added to this time and when the clock
simulation time reaches this new summed value the
Stateflow chart sets the corresponding output to 1.
When the input signal from the Vehicle Event Manager
goes back to 0, a similar approach is taken to add the
delay. The second method to create the signal delay is
to use a variable time transport delay block, which was
used for the remaining 22 effector failure signals. The
two inputs to this block are the delay time and the
signal. Each signal requires a separate transport delay
to have independent delays.

Autocommander

The Autocommander subsystem block is divided
into four parts: input organizer, output organizer,
Stateflow chart, and an algorithm section.

Even with a preliminary implementation of our
integrated G&C algorithms in IDOS, it is clear that
data organization is required for efficiently handling
I/O communication. A hierarchal data structure was
created for the input and output organizer with the use
of bus creator and bus selector Simulink Blocks. As an
example of how the data is organized, for a signal
named “signal” that is fed into a bus, “busl”, and in
turn the bussed signal is fed into another bus, “bus2”,
the data structure for the original signal would be
“bus2.bus1.signal”.

A subsystem block in the Autocommander system
contains the Autocommander Stateflow chart, the bus
selection block to specify the inputs to the chart and a
bus creation block to multiplex the chart’s output.
Currently, the chart is divided into three sections
(shown in Figure 10): Control Allocation (CA - top
left), Time Varying Bandwidth (TVB - top right), and
Flight Manager (FM - bottom). The CA section

processes IVHM data and sends a Reduced Control
Authority (RCA) flag to the G&C control allocation.
The value of the RCA flag has a value between 0 and 1
that is a scale of the percentage of remaining control
authority with “0” being not operational. The TVB
section sends a flag to the attitude control system. A
TVB flag of 1 means that the commanded effector
deflection is greater than the effector deflection limit;
otherwise the TVB flag is 0. This flag causes the
controller to adapt to effector saturation. The Flight
Manager section sequences the flight phases and
contains the baseline Nominal, Reconfigure and Abort
structure of the Autocommander. In addition, ascent
and entry flight phases each contain an algorithm
sequencer that dictates the order and time of algorithm
execution within the Autocommander’s Algorithm
section shown in Figure 11. Currently, placeholder
algorithms are used to send a completion flag to the
Stateflow chart after 1 second of run time for each
algorithm so that the algorithms are serially sequenced.

Figure 11: The Autocommander subsystem

SIMULATION RESULTS

The following section presents a comparison of
two ascent simulation runs with the same multiple
surface effector failures. The simulation run without
Time Varying Bandwidth (TVB) results are shown in
Figures 12 thru 23, and the second run with TVB
results are shown in Figures 24 thru 35. In both of
these simulation runs, all eight surface effectors fail by
50% near the time of lift off. In all the command
verses actual plots, the blue solid line is the
commanded response and the green dashed line is the
actual (sensed) response.

In theory, the TVB addition to the controller
should provide greater stability during the mach
regions and severe disturbances of flight than without
TVB. Figure 36 and Figure 37 show the scaling back
of the controller’s inner and outer loop bandwidths for
the given example. Clearly, without the TVB the
vehicle crashes as indicated by the altitude in Figure 12
and by the system instability that are shown in Figures
13 thru 15. Comparing the same plots for the
simulation run with TVB, Figure 24 shows the vehicle
making it to orbit and Figure 25 thru 27 shows the
system stability, but with a poor tracking performance
in the 100 to 200 second range. The TVB sacrifices
tracking performance for stability as shown in this
example,

Figures 16 thru 23 and Figures 28 thru 35 show the
commanded verses actual surface deflection angles for
their corresponding simulation run. Both of these sets
of figures show the 50% failure of all surface effectors
from the beginning of the simulation, which verifies
the actions of the Vehicle Event Manager.

NO TVB

x 10° X33 6DOF TL Ascent
v ¢

w—

'
H i H i H
50 100 150 200 250 300
Time

Figure 12: Altitude (ft.)

eIIsacl - o Ineon

o Inacd -+ o I meesx

O F 900F ¢ 3 J ¢

333 6DOF TL Ascent
100
|— gamma.com.z l .
an -— - gAmMmA.SeNnX l J
80 0
'll
[1] S Ml
I
f'i‘!
R e ik
L} .'
20}- L ...‘1!'..]5!..
I JAJL ')'! iﬂf
° TS I " Jo4 i
Pl fe,
) S .{. [rem--
i
P IR SUNSOR S L
iy
e It S S h] '
B0f---cmmmccacfececsanas 5 !‘ .'"-
{
e) 100 160 200 260 300
Time

333 60OF TL Ascent
Vo
o I
by i
l‘ll. .
Y] AU S S ‘--a-:t +
o (4 :
; : : i
-m() 50 100 160 200 260 300
Time

Figure 14: Commanded vs. actual pitch (deg.)

] L L
- S T !ua'l\”ffl
] ------ il 1r14 'ﬁ Pn':!é' |
: il ik Wli |
A — SEER: - A1) R -
., ARIEWRE CBHI L T hr
L= RN R ETA NS I KRR L M
N AT o e 2
DA ik AT i
P RS S - R -i"@ﬁ}iﬁﬁ?: -----
Yo il i
PY7:] -y 4 {1,140 .‘ 44 —
- A

Time
Figure 15: Commanded vs. actual roll (deg)

X33 6DOF TL Ascent

- v
H H
H H
H . .
N] CC.ienEle: dn - -
H T — . demefElevonin
H '
H H T
- i |
] | .
H . '
) ' H
3 PO . [
' 1 H
) ' H
H . 1
H i H
) H
- 3 N A S S
1 1 v
H H
H H
H H
H H
H H
H H
. H
..................................
3 H
f \
H)
[SESprepp— K
H)
H H H
H H
H H
RIS P U R PP
:
H H
1 '
: '
i H H
150 200 250 300
Tims

Figure 16: Commanded vs. actual left inboard elevon
deflections (deg.)

X33 60OF TL Ascent
0 T T
- ‘ U i H H H
: H : :
H ' V H
I R ool Lt [cCletElevoncmaou | |
: : 17| = . defLetElevonOut
(N R i LR
A H [T H =
; ¢! : ; :
1= meeenenas ronfreendend ot & jroseesaanes foreenaenes g
| s : | s
! : : : H
H : : :
: : : :
0 ‘b """""' =1 ‘. """"“"""""': """"" “1
u A -
J i |
L . | CITTEI AHe-H -4
€ Y i ——
1 H
) I eeeeenes K L S bomeeomnns 4
: | e
H : :
0 i i ; ; ;
() 50 100 180 200 20 300

Time

Figure 17: Commanded vs. actual left outboard elevon
deflections (deg.)

X33 6DOF TL Ascent

%0 T T T T T
H H : H
1 ' H . 1
1 H . H 1
] EEERS STRRREN e R R | A T TR FUTTP P p 4
' | . — CClanFlapCmd
H H . — . defLefAFlap
P] S LN S — Feeannd R LTI CTITTTI T
1 ' j
1 H i
1 H .
L] o= — =} -1 e R e
' ‘ ' '
Vo H '
H) '
W0facaecannnn EETE TEPREEN baeenned B T EETTPPERE Jemmannnan E
H) ' '
[}
: H H
E [W IR RS [LU N | L A —
T H
H H
H H
H H
8 -: ------------------------- -
H
el
H
ERRA RN J ||| S S F R .
H
|
H
H H '
150 200 250 300
Tims

Figure 18: Commanded vs. actual left flap deflections
(deg.)

OO el & av-ee-ficnas~
2
S
T
4
.
.

20}-- feeen
' i
' H
H H
H H L
MO 8 100 158 E 200 0
Tme

Figure 19: Commanded vs. actual left rudder deflections

(deg.)

X33 6DOF TL Ascent
20
- H ,‘ H H '
' H '
') '
' ' 1
H ’ '
H H H
P’ SR S A, I JRLY S — CC.ignElaanCmdn
' ’ - « delRightElevonin
JURDRS TP N EE S -
[H H
' ‘
[T "SR Y | A evenanoen adeben
1 .
H
:
'
.......... LR qea- [
. i
' B
' 1
' '
'
. eeemeeen] I S,
i
‘ '
& \ ; -
.| TR eHeecaranaad LR [Jeccacmmccan
v '
‘ H
' '
H H
\ H
' '
' H
20 H 1 1
0 0 100 160 200 250 300
e

Figure 20: Commanded vs. actual right inboard elevon
deflections (deg.)

X33 6DOF . Assenl
» T T T
v 1 '
' ' '
' ' '
. . 1
H i '
H H 3
' 1 CCaghti
f .} S J: l: PORY SR EE ot
.)
.
H [P R — e - e e e — e = .
1 H
‘ '
‘ :
0fpecemommen- dmeofioacccan P S I SRS AR T
1 '
' '
. '
' '
' H
' H
' 1
['Y YRR AN PR SR R S P S
¥ i
1 '
1 '
‘ '
' '
'
' '
: '
B) e e EY] TP TS foeemmenn cepbecanccena qecemmmccmespeccescssano
T ' /
‘ ' ' .
' ' ' '
8 ' — o '
' H '
h ' '
' , ‘
B R Aqfeemenanne demcecean -t decnannaaa
' H
' '
' '
' ¢ '
' v H
' ' '
» i 1
30 e 1 L i
£ 100 150 200 250 300
Tme

Figure 21: Commanded vs. actual right outboard elevon
deflections (deg)

X33 8DOF TL Ascent

233 6DOF TL Ascent

— . 8 “ : —3% T _
) 1 ~ ' H f
" Py, :) P :
i _ i /| S P
. PO | O . “ : = SRR OO0 OO VRO RN SO .
11 f m 5 P £
I = Iy A : = S i i E
8 oo 1 o I - 8
: 51 H : : ; 2 & H ' 1 \ 1 : 8 |51
} R & AR S LI T : «
! o S S P %
\ >y I . IR | >
R B ey R - T W k|
.- L gt “S—abgengfebresee e b2 § A A g4 3 3]
! il R - 9% Tl S - I R R - SR RO S g
. it Gl LR P R B R ST e S o I e
4= T H g 3 : D R ek = 3 : : : -7 : £
S g A 0 I 8 A S e e st I g
- ool S e o e S it S Sy | m S SRS S Wit e s S LI &
| a | LA b bR T 2
" m e 5 T D © A N m N
Ll B R S N e N NNT
. J I A O A O O I
m m L e g L s L
e @ v e ¢ 8 FF § §F F = T 8 8 3
Nowe @ £ Ean 4 Bous E B Femelonn-fuefom HeasEmEnSEER
2
——— 5 — 8
e P s : : : : b
Bl g 7 I B R 2
egli | S 3 ; : :]
AL 3 I 2 2z " “ ; " £
H -1/ S E A L SLCLEE S heeeeenes e Freneneee] &
LRI = 2l : : : -
TR S g3 1 i : “ ; £
{E = N : : : =
I £ NI £
AR S0 N S A UUUUUUE SUNN doeeeeees S g = :
ool = : : - = =8N :
oo — 7 ! ; : s o :
P = H P ; : ; g2 3 "
; : | B 3 N T : : ')] : ! :

: p H e — H . H @ ' . ‘ H
R e e Y T O e S
: ' } , @ ¢ : : : = " = 3 8 e
N 45 8 : n " S .S S AN
I =2 g —— -0- U | D T A A T A
oo 6| : : " : : MM R S S S AN
...... L S, v : 1 H PR O S SRS L PV SRR SRS S W S

o g b foeneos : e R g £3 S R R R A e

P s m m m m g A

Lo g ; : : : (&) A L

R = ; i " " A U SRS U SR SN SR SO U S W
..... BN T S S e IEERRREND

R .o : : ; : ® /[S S S E S S S

- 93 " : : : = S {11 1 A T T A

oo « : : : : g o] Lt S AR S S N NS S S T
e P P . . =% v 5 * § ~ = v 5 ©

2 g]] 2 ° 2 8 5 M -

Altitude (ft.)

.
.

Figure 24

10

T S VO o

0 @-Me0XE OB aP-ve-Mexas

Figure 28: Commanded vs. actual left inboard elevon

deflections (deg.)

X33 6DOF TL Ascenl
Y

T T
i [cc.itEinonCmdou
= defiLefiE levonOut
. .
. 1

H

H H
200 250 300

Figure 29: Commanded vs. actual left outboard elevon

deflections (deg.)

X33 6DOF TL Ascenl
T

v
~— CC.letFlapCmd
— . defiLeftFiap

)
.

Time

300

Figure 30: Commanded vs. actual left flap deflections

(deg.)

€X)-0-4ET08-(H Or OB-ES-XN0S~
.

[SRS SRRy SR | . Aemrecamm—a- [
v }
i H '
s I i }
o) 100 160 200 250 300
Time

Figure 31: Commanded vs. actual left rudder deflections
(deg.)

X33 6DOF T Ascent

...................

‘: 200 280 300
Figure 32: Commanded vs. actual right inboard elevon
deflections (deg.)
.)33 6DOF TL Ascent
h H — CC.AghtEICmaou
: i
ol 5 - RN | SR S]
S ;
§.° c | |]
b Oppr=vr=em=-! §- o W...._
: ; %
e U B Rttt | SEORERPRES FORRS pomeenneend
- % ; T Y 0

Figure 33 : Commanded vs, actual right inboard elevon
deflections (deg.)

33 6DOF TL Ascent

— CC.rightFlapCmd
— - defRightFlap

Rty e ey

......................................

......................................

OO~ & OB-JRErneS

i
250

i
200

150 300

Time
Figure 34: Commanded vs. actual right flap deflections
(deg.)
2 X33 SDOF TL Ascent
T ' H ! = G AigRuddwCmd
H ! | = - detRightRudder
-------- r-"---‘-'--s--- B R REC Lt EEEEEEE R e
4
&
" i i : ; ;
0 80 100 150 200 250 300

Time

Figure 35: Commanded vs. actual right rudder
deflections (deg.)

X33 8DOF TL Ascent

e — e i — -

H
T omegazt

— . omega2?
H) . | —— omaga2)
5‘0 H;O I(‘)D 21.')0 250 300
Time
Figure 36: Inner loop bandwidth for the simulation run
with TVB.

X33 SDOF W Ascont

s
ats
i [e el i s st S ttl | £ ettt
H — omogall
i 013fevrvecenenn F : - — - omegei2
’ — omegail
¥
' 042fceccrcccccaddedicccanaracnceaas
¥
Otlf-ccccacnana T)
°"o s:o 6 188 E %0 0
Time
Figure 37: Quter loop bandwidth for the simulation run
with TVB,
CONCLUDING REMARKS

The implementation of IG&C algorithms into a
high fidelity Simulink vehicle simulation, such as
IDOS’s flight control software (FCSW), is a far less
cumbersome process than implementing algorithms
within traditional hard coded simulations. The
modularity of the IG&C portion of the simulation
model allows users to easily interchange algorithms
with little additional effort. Signal traceability and
analysis cabilities of Simulink provide a user a time
saving and a confidence building way of verifying and
testing new G&C algorithms.

ACKNOWLEDGEMENT

This work is supported by NASA Marshall Space
Flight Center under the 2™ Generation Reusable
Launch Vehicle program. A thank you goes out to
Universal Space Lines for providing IDOS and support
in our IG&C implementation.

REFERENCES

[11 C.G. Casssandras, S. Lafortune, Introduction to
Discrete Event Systems, Kluwer Academic
Publishers, Boston, MA, 1999,

[2] J.E.Fisher, D. A. Lawrence and J. J. Zhu,
Stateflow Autocoder, Proceedings of the 34™
Southeastern Symposium on System Theory,
Huntsville, Alabama, March 18-19, 2002, IEEE
0-7803-7339-1, pp. 467-470.

[3]

(4]

(5]

[6]

[7]

J. E. Fisher, D. A. Lawrence and J. J. Zhu,
Autocommander — A Supervisory Controller for
Integrated Guidance and Control for the 2°
Generation Reusable Launch Vehicle, AIAA
Guidance, Navigation and Control Conference &
Exhibit, ATAA-2000-4562 Monterey, California,
August 5-8, 2002.

Khalil, Hassan, Nonliner Systems, Prentice Hall,
Upper Saddle River, NJ, 1996.

J. Jim Zhu, Brad D. Banker, X-33 Ascent Flight
Controller Design by Trajectory Linearization —
A singular perturbation Approach, ATAA
Guidance, Navigation and Control Conference &
Exhibit, ATAA-2000-4159 Denver, Colorado,
August 14-17, 2000.

J. Jim Zhu, A. Scottedward Hodel, Kerry
Funston and Charles E. Hall, X-33 Entry Flight
Controller Design by Trajectory Linearization —
A singular perturbation Approach, 24" Annual
AAS Guidance and Control Conference, AAS-
01-012, Breckenridge, Colorado, January 31 thru
February 4, 2000.

Stateflow for State Diagram Modeling: User’s
Guide Version 4, The Math Works, 2001.

